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and to determine their relative contribution using artificial intelligence as a mode of prediction. 
The current investigation was led by breaking down dataset as depicted beneath. We chose a 
dataset posted at Kaggle. The dataset was about diabetes from India. It comprises of 763 female 
members, of whom 497 had no diabetes, and 266 with type 2 diabetes. We utilized neural 
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factors. The importance was considered at α<0.05. The results of the present study showed that 
the risk factors were ranked according to their relative importance in the following order: 
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Neural network analysis is used to establish predicting models of disease including diabetes to 
identify risk factors. The objectives of this study were to identify risk factors leading to diabetes 
and to determine their relative contribution using artificial intelligence as a mode of prediction. 
The current investigation was led by breaking down dataset as depicted beneath. We chose a 

ggle. The dataset was about diabetes from India. It comprises of 763 female 
members, of whom 497 had no diabetes, and 266 with type 2 diabetes. We utilized neural 
network analysis to build mathematical models and to show the arrangement of diabetic risk 

ctors. The importance was considered at α<0.05. The results of the present study showed that 
the risk factors were ranked according to their relative importance in the following order: 
Diabetes Pedigree Function, age, glucose, skin thickness, blood pressure, BMI, insulin, and 
number of pregnancies. Taken together, neural network analysis is effective in establishing 
mathematical models that can predict risk factors of the diseases. 
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INTRODUCTION 

Type 2 diabetes mellitus (T2DM) is a non-

infectious and ongoing illness [1]. T2DM can 

cause numerous different sicknesses, for 

example, cardiovascular illness [2], stroke [3], 

visual impairment [4], and loss of renal 

capacity [5]. The pervasiveness of diabetes is 

expanding. Around the world, 285 million 

individuals had diabetes in 2010, contrasted 

with 422 million out of 2014 [6] and this 

number is projected to increment to 438 

million in 2030 [7] and 592 million out of 

2035 [8]. The pervasiveness of diabetes in low-

pay or moderate-pay nations is higher than in 

top level salary nations [7], and it represents an 

enormous portion of the mortality and 

incapacity rate in such networks [6]. One 

reason for the high pervasiveness of diabetes 

in low-pay nations might be low degrees of 

information and mindfulness about diabetes 

[9]. 

The anticipation of diabetes mellitus is of 

high significance in all networks. The initial 

phase in the avoidance of T2DM is to 

distinguish its danger factors. Reviewing 

literature showed that variables, for example, 

age [10,11], sex [10,12], family background of 

diabetes [11, 13], hypertension [14], stoutness 

[10,15], stomach weight [16], stress in the 

working environment or home [17,18], a 

stationary way of life [19,20], smoking [21], 

inadequate leafy foods utilization [22], and 

active work [23,24] are hazard factors related 

with T2DM. 

The Diabetes Pedigree Function, pedi, was a 

particularly intriguing feature used in the 

study. It included information on diabetes 

mellitus in relatives as well as the genetic link 

between those relatives and the patient. This 

genetic influence measurement gives us an 

understanding of the hereditary risk of 

developing diabetes mellitus. It's uncertain 

how effectively this function predicts the 

beginning of diabetes, based on the findings 

in the preceding section [25]. 

Study objectives: 

The main objectives of the present study were 

to identify risk factors leading to diabetes and 

to determine their relative contribution using 

artificial intelligence as a mode of prediction.  

METHODS:  

The current investigation was led by breaking 

down dataset as depicted beneath. We chose a 

dataset posted at Kaggle. The dataset was 

about diabetes from India. It comprises of 763 

female members, of whom 497 had no 

diabetes, and 266 with type 2 diabetes. We 

utilized neural network analysis to build 

mathematical models and to show the 
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arrangement of diabetic risk factors. The 

importance was considered at α<0.05. 

The dataset zeroed in on a few danger factors 

among which is the insulin. Neural network 

analysis infers deciding forecasts of risk 

factors, autonomous factors, or covariates on 

the result, the diabetes. This cycle included 

three layers, input layer (covariates), stowed 

away layers, and yield layer (subordinate 

variable). This cycle varies from conventional 

measurements in giving expectations that can 

have effects on the reliant factors.  

RESULTS  

As shown in table (1), a case processing 

summary was provided. A total of 540 

(89.3%) of cases were included in training, 

while a total of 65 (10.7%) of cases were 

included in testing. Valid cases were 605 

(100%) cases.  

 

Table 1: Case Processing Summary 

 N Percent 

Sample Training 540 89.3% 

Testing 65 10.7% 

Valid 605 100.0% 

Excluded 163  

Total 768  

 

Network information 

As illustrated in table (2), the model included three layers. The first layer (input layer) included 8 

risk factors: No of pregnancies, glucose, blood pressure, skin thickness, insulin, BMI, diabetes 

pedigree function, and age. The second layer(s) represented hidden layers as follows: number of 

hidden layers (1), number of units in hidden layer (10), and the activation function was 

hyperbolic tangent. The output layer included one dependent variable (the outcome, diabetes), 

number of units (2), the activation function was soft max, and error function was expressed as a 

cross-entropy.   
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Table 2: Network Information 

Input Layer Factors 1 Pregnancies 

2 Glucose 

3 Blood Pressure 

4 Skin thickness 

5 Insulin  

6 BMI 

7 Diabetes Pedigree Function  

8 Age 

Number of Unitsa 1069 

Hidden Layer(s) Number of Hidden Layers 1 

Number of Units in Hidden Layer 1a 10 

Activation Function Hyperbolic tangent 

Output Layer Dependent Variables 1 outcome 

Number of Units 2 

Activation Function Softmax 

Error Function Cross-entropy 

a. Excluding the bias unit 

Model Summary 

As illustrated in table (3), model summary 

was provided. About 31% was the incorrect 

prediction of diabetes in training part. In 

testing part, the percent incorrect prediction 

was 29.2%. 

Table 3: Model Summary 

Training Cross Entropy Error 316.633 

Percent Incorrect Predictions 31.3% 

Stopping Rule Used 1 consecutive step(s) with no 

decrease in errora 

Training Time 0:00:16.59 

Testing Cross Entropy Error 30.760 

Percent Incorrect Predictions 29.2% 

Dependent Variable: outcome 

a. Error computations are based on the testing sample. 
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Classification 

As seen in table (4), in training part, the 

overall percent for prediction of diabetes 

68.7%, while the overall percent of prediction 

of diabetes was 70.85 in testing part. 

 

Table 4: Classification 

Sample Observed Predicted 

.00 1.00 Percent Correct 

Training .00 325 24 93.1% 

1.00 145 46 24.1% 

Overall Percent 87.0% 13.0% 68.7% 

Testing .00 43 4 91.5% 

1.00 15 3 16.7% 

Overall Percent 89.2% 10.8% 70.8% 

Dependent Variable: outcome 

 

Independent Variable Importance 

As seen in table (5) and figure (1), the order 

of risk factors according to the importance 

came in the following order: Diabetes 

Pedigree Function (100%), age (92.6%), 

glucose (89.6%), skin thickness (87.7%), 

blood pressure (84.4%), BMI (83.3%), insulin 

(82.7%), and number of pregnancies (81.7%). 

Table 5: Independent Variable Importance 

 Importance Normalized 

Importance 

Diabetes Pedigree Function .142 100.0% 

Age .132 92.6% 

Glucose .128 89.6% 

Skin thickness .125 87.7% 

Blood Pressure  .120 84.4% 

BMI .119 83.3% 

Insulin  .118 82.7% 

No of Pregnancies .116 81.7% 
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Figure 1: The importance of risk factors for diabetes 

DISCUSSION: 

The results of this study showed that the most 

important risk factor for developing diabetes 

is the Diabetes Pedigree Function. This 

implies that genetic predisposition is highly 

affecting the occurrence of diabetes. This was 

also reported by other studies in which the 

Diabetes Pedigree Function was one of the 

main causative agents for diabetes [26]. 

Age was shown to be the second important 

risk factor for diabetes. This is also in 

agreement with previous studies [26]. As the 

age increases, diabetes is likely to occur [26, 

27].  

The results of this study showed that the 

glucoselevelwas the third important risk 

factor for diabetes. Diabetes is measured by 

glucose and defined by its levels. Glucose 

level has been reported by other datasets as an 

important predicting risk factor for diabetes 

[26-29]. 

Skin thickness followed the level of glucose 

regarding the importance of diabetic risk 

factors. Skin thickness (the contact between 
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the epidermis and the dermis), which is 

mostly determined by collagen content, is 

more evident in DM patients who have been 

diabetic for more than ten years [30]. This 

could be due to increased collagen cross-

linking and lower collage turnover [31, 32]. 

Jain., et al. [33] undertook a study to assess 

skin and subcutaneous tissue thickness in type 

2 diabetic patients, with the hope that this 

information would be useful during the 

insulin infusion procedure. Their findings 

revealed that in people with a BMI of less 

than 23 kg/m2, the mean skin thickness was 

higher in males than females at the arm and 

thigh (P 0.05). Males with a BMI of 19 to 23 

kg/m2 had thicker skin around the middle [34].  

The results showed that blood pressure 

predicted the occurrence of diabetes. This 

result confirmed previous studies in which 

blood pressure could be a risk factor to 

diabetes [26, 35].  T2D may cause hypertension, 

however the association between T2D and 

hypertension is unlikely to be causal. These 

findings highlight the need of maintaining a 

healthy glycemic profile in the general 

population, as well as BP screening and 

monitoring, particularly systolic BP, in T2D 

patients [36].   

The results of the present study showed that 

BMI is one of the important risk factors of 

diabetes. It has been recently reported that the 

pre-diagnosis BMI was positively related with 

microvascular problems in patients with 

incident type 2 diabetes, although weight loss 

was associated with a lower risk when 

compared to stable weight. The links to 

macrovascular disease were less obvious [37].   

The level of insulin was shown to be an 

important predicting factor for diabetes. We 

have previously shown that the level of 

insulin increases as the diabetes is progressed 

[38, 39].  

The results of this study showed that number 

of pregnancies is the least important 

predicting risk factor of diabetes. It has been 

reported that pregnancy may lead to 

gestational diabetes [40].  

CONCLUSIONS:  

The present study showed that several 

important risk factors were associated with 

diabetes using neural network analysis. These 

risk factors were ranked according to their 

relative importance in the following order: 

Diabetes Pedigree Function, age, glucose, 

skin thickness, blood pressure, BMI, insulin, 

and number of pregnancies.   
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