

HERBAL APPROACH FOR THE MANAGEMENT OF DIABETES MELLITUS: AN OVERVIEW

Reeta Devi*,¹ Savita Kumari,¹ Ankit Verma,² Rubina Sharma¹

¹Department of Pharmacology, CT Institute of Pharmaceutical Sciences, Shahpur, Jalandhar.

²Department of Pharmaceutics, CT Institute of Pharmaceutical Sciences, Shahpur, Jalandhar.

Submitted on: 12.04.2016;

Revised on: 28.04.2016;

Accepted on: 12.05.2016

ABSTRACT

Diabetes mellitus occurs all through the world, yet is more regular (particularly Type 2) in the developed nations. Present world situation all inclusive up to 2013 shows around 382 million individuals experiencing Type 2 diabetes making up around 90% of the cases. Antidiabetic herbal formulations are widely formulated because of their fewer side effects as compared to synthetic drugs. Antidiabetic herbal formulations (AHF) are thought to be more effective for the management of diabetes. In India there are around 600 herbal drug manufacturers of which almost all of them are developing AHF in addition to others. The aim of this review is to summarize role of herbal drugs, marketed formulation and patented formulation for the management of diabetes mellitus.

KEY WORDS: Diabetes mellitus, Herbal formulation, Patent

Corresponding author: Reeta Devi Tel.: +91 9041974829 E-mail address: reetadevi7618@gmail.com

Indian Research Journal of Pharmacy and Science; 9(2016) 549-555 Journal Home Page: https://www.irjps.in

EPIDEMIOLOGY

diabetes mellitus.7

etc.³

blindness, increased risk of cardiovascular disease

International Diabetes Federation (IDF) defines that

about 382 million patients were estimated with

diabetes in 2013 which is probable increase to 592

million in 2035.⁴China is a leading country of

diabetic patients i.e. 98.4 million,⁵ in India 87.0

million,⁶ and in brazil 11 million population having

INTRODUCTION

Diabetes mellitus is progressively common group metabolic disease which affects 100 millions of people globally. DM is a heterogeneous disorders that is characterized by hyperglycemia¹ due to defective insulin secretion, insulin deficiency and insulin resistance.² DM may leads to various complications: microvascular and macrovascular which includes stroke, nephropathy, neuropathy,

SIGN AND SYMPTOMS OF DIABETES MELLITUS⁸

Type 1 diabetes mellitus

Type 1 DM also known insulin dependent diabetes mellitus (IDDM). In this disease, absolute deficiency of insulin occurs. Destruction of beta cells is due to virus invasion, action of autoimmune antibodies or action of chemical toxins.¹⁰

Type-2 diabetes

Non- insulin dependent diabetes mellitus (NIDDM) or Type-2 diabetes is normally accompanied by insulin resistance that limits reaction to both exogenous and endogenous insulin.¹¹

Type-3 diabetes

Also known as gestational diabetes mellitus (GDM) observed in about 4-5% of all pregnancies, insulin resistance occurs in this type of diabetes because of placental hormones.¹²

COMPLICATIONS OF DIABETES MELLITUS¹³

Type- 4 diabetes

It is caused by chronic drug therapy: growth hormone glucocorticoids, diazoxide, thiazids diuretics or chronic pancreatitis and by protease inhibitors (e.g. saquinavir).¹²

DIABETIC MODELS

At current time greatest and quickest method to induce diabetes are chemicals such as alloxan, dithizone, streptozotocin, monosodium glutamates etc., viruses, hormone and genetically diabetic rats. During and after the induction of diabetes, body changes are observed, this is the main advantage of such chemicals. Most commonly used diabetogenic agents are alloxan and streptozotocin.¹⁴

Sr.	Induction method	Model	Main feature
no.			
1	Chemical Induction	Alloxan	Simple model of hyperglycaemia.
		Streptozotocin (STZ)	
		Dithizone	
		Gold thioglucose	
		Monosodium glutamate	
2	Virus induced	D-Variant	Destruction of Beta cell byviral infection
		Encephalomyocarditis	
		Coxsackie Viruses	
		Kilham rat virus	
3	Hormone induced	Growth hormone induced	Loss of pancreatic islets tissues and of beta cells
		diabetes	produced permanent diabetes

		Corticosteroid	induced	Oppose	insulin	action	and	stimulate
		diabetes		gluconeogenesis.				
				e.g.: pred	nisolone a	nd dexam	ethasone	e
4	Spontaneous	Non- obese diabetic mice		Destruction of Beta cell by autoimmune process				
	Autoimmune	Bio-breeding rats						
5	Genetically induced	Akita mice		Destructio	on of Beta	cell due to) ERstre	SS.

Table 2: Herbal Formulations for Management of Diabetes

Sr.	Plants (family)	Active constituents	Herbal	Effect	Ref.
No.			formulation/		No.
			common name		
1	Artemisia	Germacranolide	Davana	Hypoglycemic, inhibits	17
	pallens(Asteraceae)			glucose reabsorption	
2	Areca catechu	Arecaine and arecoline	Supari	Hypoglycemic	18
	(Arecaceae)				
3	Bombax ceiba	Anthocyanin A & B	Semul	Hypoglycemic	19
	(bombacaceae)	kaempferol	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~)F •8-) • • • • •	
4	Coccinia indica	Alkaloid, Resin,	Bimb or	Hypoglycemic	20
	(cucurbitaceae)	Carbonic acid	Kanturi		
5	Ficus	Leucodelphinidin and	Bur	Hypoglycemic,	21
	bengalenesis(Moraceae)	Leucopelargonin		antioxidant	
6	Murraya koenigii	Murray	Curry patta	Hypoglycemic, increases	22
	(Rutaceae)	anine,murrayazoline,		glycogenesis and	
		murrayacine.		decreases glycogenolysis	
7	Phaseolus vulgaris	Kaempferol-3-	white kidney	Hypoglycemic,	23
	(Fabaceae)	rutinoside, quercetin-3-	bean, hulga	hypolipidemic, inhibit	
		rutinoside		alpha amylase	
				activity, antioxidant.	
8	Swertia chirayita	Swertianin, swerchirin	Chirata	Stimulates insulin	24
	(Gentianaceae)			release from islets	
9	Terminalia belerica	Beleric acid	Behada	Antibacterial,	25
	(Combretaceae)			hypoglycemic	
10	Terminalia chebula	Chebulinic acid,	Hirda	Antibacterial,	25
	(Combretaceae)	chebulic acid etc.		hypoglycemic	
11	Withania somnifera	Somniferine, with an an ine	Ashvagandha,	Hypoglycemic, diuretic	26
	(Solanaceae)	and	winter cherry	and hypocholesterolemic	
		Cuscohygrine			

Table 3: Commercially Marketed AHF: A Glimpse²⁷

Sr.No.	AHF Marketed in India	AHF Marketed Internationally
1	Cogent-db capsules	Pancrease formula
2	Diabyog capsules	Eleotin, Ayubes

3	Diabecon	Diabetes Hypoglucose Capsules
4	MadhuMaheri granules	Pearl Hypoglycemic Capsules
5	MadhuSunya	Tongyitang Diabetes Angle Hypoglycemic Capsules
6	MadhumehAmrit	Zhen-Qi Capsules

Table 4: Patented Anti-diabetic Herbal Formulations

Sr.	Patent No.	Field of Invention	Year of	ar of Inventor/Assignee	
No.			Publication		No.
1	US7815946	Anti-diabetic and cholesterol	2010	Murthy, P.S., Moorthy, R., Probhy K.M. Puri D	28
		fenugreek seeds		Flabilu, K.IVI., Full, D.	
2	US7641925	Synergistic composition for the treatment of diabetes mellitus	2010	Bhaskaran, S., Mohan, V.	29
3	US7736676	Synergistic composition for the management of diabetes	2010	Bhaskaran, S., Mohan, V.	30
4	US7482030	Natural herb composition for the treatment of diabetes.	2009	Mansilla, A.	31
5	US20080206372	Herbal product to be administered to diabetic people and process	2008	Agreda, N.J., Martin, P.F., Belo, M.E.W.	32
6	US7014872	Herbal nutraceutical formulation for diabetics	2006	Pushpangadan, P., Prakash, D.	33
7	US20060177530	Method of treating diabetes type-2	2006	Crea, R.	34
8	US6893627	Method for treating type-2 diabetes with an extract of Artemisia	2005	Ribnicky, D.M., Raskin, I.	35
9	US20020197334	Pharmaceutical composition for the treatment of diabetes mellitus	2002	Seung, Y.L.	36
10	US6093403	Sugar imbalance and diabetes treating herbal formulation	2000	Huo, Y.S., Lo, S.J., Winters, W.D.	37

CONCLUSION

At present the occurrence of Diabetes mellitus has reached 200million worldwide. Despite the number of anti-diabetic herbal formulations for the treatment of diabetes, there search has taken an effort towards preparing AHF. Investigating the score of patent and literature it has been considered that the area of

REFERENCES

 Bell GI, Polonsky KS., Nature 414., 2001; 788–791. antidiabetic treatment by herbal medications is investigating effectively at a greater pace. Antidiabetic herbal formulations (AHF) are being marketed domestically as well as internationally because of their less side effects and ease of affordability.

- 2. Zimmet PK, Alberti G, Shaw GJ., Nature 414., 2001; 2782–787.
- 3. Brownlee M, Nature 414., 2001; 813-820

- 4. Saisho Y., Importance of beta cell function for the treatment of type 2 diabetes., Journal of Clinical Medicine.,2014;3: 923-943.
- Tiwari AK, Reddy KS, Radhakrishnan J, Kumar DA, Zehra A, Agawane SB, and Madhusudana K., Influence of antioxidant rich fresh vegetable juices on starch induced postprandial hyperglycemia in rats.,Food & Function.,2011; 2(9): 521-528.
- Ramachandran A, Das AK, Joshi SR, Yajnik CS, & Shah S., Current status of diabetes in india and need for novel therapeutic agents., 2010; 58: 7-9.
- Andrade RC, Figueiredo RC, & Fabbro AL., Prevalence of diabetes mellitus in the Japanese brazilian community of mombuca, guatapara, sp., Arq Bras Endocrinol Metab., 2011; 55(2): 127-133.
- Sharma R, Dave V, Sharma S, Jain P, Yadav S., Experimental Models on Diabetes: A Comprehensive Review., International Journal of Advances in Pharmaceutical Sciences., 2013; 4: 01-08.
- Pierol MN, Nzaro GM, & Njagi JM., Diabetes mellitus – a devastating metabolic disorder., Asian Journal of Biomedical and Pharmaceutical Sciences., 2014; 04 (40); 1-7.
- 10. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E., Metabolite profiles and the risk of developing diabetes., Nature medicine., 2011;17(4):448-53.
- Bacha F, Lee S, Gungor N, Arslanian SA. From pre-diabetes to type 2 diabetes in obese youth: pathophysiological characteristics along the spectrum of glucose dysregulation. Diabetes care., 2010;33(10):2225-31.
- Tripathi V, Verma JJ., Current updates of Indian antidiabetic medicinal plants., Int Pharm Chem., 2014;4:114-8.
- 13. Fowler MJ.,Microvascular and macrovascular complications of diabetes.,2008; 26 (2): 77-82.
- Mendez JD, Ramos HG., Animal models in diabetes research., Archives of medical research., 1994;25(4):367-75.
- 15. Tripathi V, Verma J., Different models used to induce diabetes: a comprehensive review.,

International Journal of Pharmacy and Pharmaceutical Sciences., 2014; 6(6): 29-32.

- King AJF., The use of animal models indiabetes research., British Journal of Pharmacology., 2012;166: 877–894.
- Subramonium A, Pushpangadan P, Rajasekharan A, Evans DA, Latha PG, and Valsaraj R., Effects of *Artemisia pallens* wall on blood glucose levels in normaland alloxan-induced diabetic rats., J. Ethnopharmacol., 1996; 50:13–17.
- Chempakam B., Hypoglycemic activity of arecoline inbetel nut *Areca catechu* L., Ind. J. Exp. Biol., 1993; 31: 474–475.
- Bhattacharya A, Chatterjee A, Ghosal S, and Bhattacharya SK., Antioxidant activity of active tannoid principles of *Emblica* officinalis (amla). Indian J. Exp. Biol., 1999; 37: 676–680.
- Kamble SM, Kamlakar PL, Vaidya S, and Bambole VD., Influence of *Coccinia indica* on certain enzymes inglycolytic and lipolytic pathway in human diabetes., IndianJ. Med. Sci., 1998; 52: 143–146.
- Augusti KT, Daniel RS, Cherian S, Sheela CG andNair CR., Effect of Leucoperalgonin derivative from *Ficusbengalensis* Linn. on diabetic dogs., Indian J. Med. Res., 1994; 99: 82–86.
- Khan BA, Abraham A, and Leelamma S., Hypoglycemicaction of *Murraya koenigii* (curry leaf) and *Brassica juncea*(mustard) mechanism of action.,Ind. J. Biochem. Biophys., 1995; 32: 106–108.
- Tormo MA, Gil-Exojo I, Romero de Tejada A, and Campillo JE., Hypoglycemic and anorexigenic activitiesof an alpha-amylase inhibitor from white kidney beans(*Phaseolus vulgaris*) in Wistar rats., Br. J. Nutr., 2004; 92: 785–790.
- Saxena AM, Bajpai MB, Murthy PS, and Mukherjee SK., Mechanism of blood sugar lowering by a Swerchirincontaininghexane fraction (SWI) of Swertia chirayita., Ind.J. Exp. Biol., 1993; 31: 178–181.
- 25. Sabu MC, and Kuttan R., Antidiabetic activity of medicinalplants and its relationship with their antioxidant property., J.Ethnopharmacol., 2002; 81: 155–160.

- Adallu B. and Radhika B., Hypoglycemic, diuretic andhypocholesterolemic effect of winter cherry (*Withaniasomnifera*, Dunal) root., Indian J. Exp. Biol., 2000; 38: 607– 609.
- 27. Wais M, Iram N, Samad A, Beg S, Abusufyan S, Ajaz AS, and Aqil M., Herbal Drugs for Diabetic Treatment: An Updated Review of Patents., Recent Patents on Anti-Infective Drug Discovery., 2012; 7: 1-7.
- Murthy PS, Moorthy R, Prabhu KM, Puri D., Anti-diabeticand cholesterol lowering preparation from fenugreek seeds., US7815946.,2010.
- 29. Bhaskaran S, Mohan V., Synergistic composition for the treatmentof diabetes mellitus., US7641925.,2010.
- Bhaskaran S, Mohan V., Synergistic composition for the treatment of diabetes mellitus., US7736676., 2010

- 31. Mansilla A., Natural herb composition for the treatment of diabetesand manufacturing method thereof., US7482030., 2009.
- 32. Agreda NJ, Martin PF, Belo MEW., Herbal product to beadministered to diabetic people and process to obtain it., US20080206372.,2008.
- Pushpangadan P, Prakash D. Herbal nutraceutical formulation fordiabetics and process for preparing the same. US7014872.,2006.
- 34. Crea R., Method of treating diabetes type-2., US20060177530., 2006.
- Ribnicky DM, Raskin I., Method for treating type 2 diabetes withan extract of *Artemisia*. US6893627., 2005.
- Seung YL., Pharmaceutical composition for the treatment of diabetesmellitus., US20020197334., 2002.
- 37. Huo YS, Lo SJ, Winters WD., Sugar imbalance and diabetes treating herbal formulation., US6093403., 2000.

CONFLICT OF INTEREST REPORTED: NIL;

SOURCE OF FUNDING: NONE REPORTED